Numerical Study of Blow up and Stability of Solutions of Generalized Kadomtsev-Petviashvili Equations

نویسندگان

  • Christian Klein
  • Jean-Claude Saut
چکیده

We first review the known mathematical results concerning the KP type equations. Then we perform numerical simulations to analyze various qualitative properties of the equations : blow-up versus long time behavior, stability and instability of solitary waves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On critical behaviour in generalized Kadomtsev–Petviashvili equations

An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the...

متن کامل

Blow up and instability of solitary wave solutions to a generalized Kadomtsev– Petviashvili equation and two-dimensional Benjamin–Ono equations

Blow up and instability of solitary wave solutions to a generalized Kadomtsev– Petviashvili equation and two-dimensional Benjamin–Ono equations BY JIANQING CHEN*, BOLING GUO AND YONGQIAN HAN School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, People’s Republic of China Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088, Peopl...

متن کامل

Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation

In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.

متن کامل

Numerical Simulation of Generalized Kp Type Equations with Small Dispersion

We numerically study nonlinear dispersive wave equations of generalized Kadomtsev-Petviashvili type in the regime of small dispersion. To this end we include general power-law nonlinearities with different signs. A particular focus is on the Korteweg-de Vries sector of the corresponding solutions. version: October 26, 2006

متن کامل

Fourth Order Time-Stepping for Kadomtsev-Petviashvili and Davey-Stewartson Equations

Purely dispersive partial differential equations such as the Korteweg–de Vries equation, the nonlinear Schrödinger equation, and higher dimensional generalizations thereof can have solutions which develop a zone of rapid modulated oscillations in the region where the corresponding dispersionless equations have shocks or blow-up. To numerically study such phenomena, fourth order time-stepping in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012